Visualization & Exploration of Airbnb User booking

For Airbnb data is an integral part of their business model, used to identify individuals without the annoyance of surveys and feedback. The Airbnb data we have access to is collected with the intention of gathering information about the customers; the tables used in this project were created for predicting the first booked destination for United States Airbnb users.

The importance of this data lies in the information it gives about the individual customers. In order to best predict an individual's travel location, one would expect the individual to make similar travel decisions to those who have analogous tendencies. The determinant of the usefulness of the data is the extent to which we can compare individuals' tendencies and group like-minded individuals.

The measure of a good prediction algorithm in this case would be the percentage of correctly identified "first booked destination" countries. If an algorithm is able to accurately predict the destination for 80% of individuals then algorithms are successful because of the potential impact. There is room for error due to the lack of detailed data that one often obtains from new users. With an algorithm success rate of 80%, individuals can have locations recommended that may impact the chances a person books a trip. Ultimately, any accuracy rate which increases company revenue, should be deemed successful, but those that create more repeat users will be the best.

Our data has a total of 16 attributes with 213,451 seperate records. The predicted value is "country_destination"

Attribute Information

id

Identifies each unique user

date_account_created

The date an account was created

timestamp_first_active

Time stamp of the first activity of the user in absolute terms

date_first_booking

The date the first booked occurred

gender

The identification of an individual as Male, Female, or unidentified (unknown)

age

The years in which a person has been alive

signup_method

The method in which an account was created (Basic or Facebook)

signup_flow

the page from which the user came to sign up

language

international language preference

affiliate_channel

paid marketing type

affiliate_provider

location of marketing (Craiglist, Direct, Google, Other and Yahoo)

first_affiliate_tracked

first marketing interaction before sign up

signup_app

type of application used for sign up (Android, iOS, Moweb, Web)

first_device_type

The device used during sign-up

first_browser

The internet browser that was used to sign up

country_destination

Destination country for the account's first booking

For more information on the data set can be found at https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/data (https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/data)

Verify Data Quality

As mentioned in the previous section, the attributes Age and Gender have many missing values. Missing values for Age are noted as null, while missing values for Gender are noted as '-unknown-'.

```
In [2]:
        # Import mathematical libraries for Python
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Draw inline
        %matplotlib inline
        # Set figure aesthetics
        sns.set_style("white", {'ytick.major.size': 10.0})
        sns.set_context("poster", font_scale=1.1)
        # Create our dataframes
        train users = pd.read csv('/Users/kareemwilliams/DATAMINING/train users
        2.csv')
        test_users = pd.read_csv('/Users/kareemwilliams/DATAMINING/test_users.cs
        v')
```

In [3]: print 'We have', train_users.shape[0], 'users in the training set.'
We have 213451 users in the training set.

In [4]: # Merge our 2 dataframes, train_users and test_users
#users = pd.concat((train_users, test_users), axis=0, ignore_index=True)
train_users.head()

Out[4]:

	id	date_account_created	timestamp_first_active	date_first_bookir
0	gxn3p5htnn	2010-06-28	20090319043255	NaN
1	820tgsjxq7	2011-05-25	20090523174809	NaN
2	4ft3gnwmtx	2010-09-28	20090609231247	2010-08-02
3	bjjt8pjhuk	2011-12-05	20091031060129	2012-09-08
4	87mebub9p4	2010-09-14	20091208061105	2010-02-18

```
In [5]: # Replace null with NaN for Age attribute
    train_users.age.replace(np.nan, 0, inplace=True)
    train_users['age'] = train_users['age'].astype('Int64')
    train_users.age.replace(0, np.nan, inplace=True)

# Delete columns that we will not use
    del train_users['first_affiliate_tracked']
    del train_users['affiliate_channel']
    del train_users['timestamp_first_active']
    del train_users['id']
    del train_users['language']

train_users.head()
```

Out[5]:

	date_account_created	date_first_booking	gender	age	signup_method	si
0	2010-06-28	NaN	- unknown-	NaN	facebook	0
1	2011-05-25	NaN	MALE	38	facebook	0
2	2010-09-28	2010-08-02	FEMALE	56	basic	3
3	2011-12-05	2012-09-08	FEMALE	42	facebook	0
4	2010-09-14	2010-02-18	- unknown-	41	basic	0

>

In [6]: # Create Age Bucket variable
 train_users['age_bucket'] = pd.cut(train_users.age,[0,9,19,29,39,49,59,6
 9,79,89,99,1e6],3,labels=['0-9','10-19','20-29','30-39','40-49','50-5
 9','60-69','70-79','80-89','90-99','100+'])
 age_3039 = sum(train_users['age_bucket'] == '30-39')
 total_age = train_users['age_bucket'].count()

 print 'About', int(float(age_3039)/total_age * 100) ,'% our users are be
 tween the ages of 30 and 39' + '\n'
 print 'Here are some statistics about the Age Bucket attribute:'
 print train_users.age_bucket.describe()

About 37 % our users are between the ages of 30 and 39

Here are some statistics about the Age Bucket attribute:

count 125461 unique 11 top 30-39 freq 47570

Name: age_bucket, dtype: object

In [7]: # Replace '-unknown-' with NaN for Gender attribute
 train_users.gender.replace('-unknown-', np.nan, inplace=True)
 #users_nan = (users.isnull().sum() / users.shape[0]) * 100
 #users_nan[users_nan > 0].drop('country_destination')
 train_users.head(10)

Out[7]:

	date_account_created	date_first_booking	gender	age	signup_method	siç
0	2010-06-28	NaN	NaN	NaN	facebook	0
1	2011-05-25	NaN	MALE	38	facebook	0
2	2010-09-28	2010-08-02	FEMALE	56	basic	3
3	2011-12-05	2012-09-08	FEMALE	42	facebook	0
4	2010-09-14	2010-02-18	NaN	41	basic	0
5	2010-01-01	2010-01-02	NaN	NaN	basic	0
6	2010-01-02	2010-01-05	FEMALE	46	basic	0
7	2010-01-03	2010-01-13	FEMALE	47	basic	0
8	2010-01-04	2010-07-29	FEMALE	50	basic	0
9	2010-01-04	2010-01-04	NaN	46	basic	0

In [8]: # Look at Date First Booking attribute

<code>print</code> 'We have', int((float(train_users.date_first_booking.isnull().sum ()) / train_users.shape[0]) * 100), '% of missing values at date_first_b ooking in the training data'

print '\n' + 'Here are some statistics about the Date First Booking attr
ibute:'

train_users.date_first_booking.describe()

We have 58 % of missing values at date_first_booking in the training data

Here are some statistics about the Date First Booking attribute:

Out[8]: count 88908

unique 1976 top 2014-05-22 freq 248

Name: date_first_booking, dtype: object

```
print 'Here are some statistics about the Age attribute:'
         print train_users.age.describe()
         Here are some statistics about the Age attribute:
                   125461.000000
         count
         mean
                       49.668335
         std
                      155.666612
         min
                        1.000000
         25%
                       28.000000
         50%
                       34.000000
         75%
                       43.000000
         max
                     2014.000000
         Name: age, dtype: float64
In [10]: print 'Users above 99:'
         print train_users[train_users.age > 99]['age'].describe()
         Users above 99:
         count
                   2371.000000
                    731.693800
         mean
         std
                    895.193534
                    100.000000
         min
         25%
                    105.000000
         50%
                    105.000000
         75%
                   2014.000000
                   2014.000000
         Name: age, dtype: float64
In [11]: | print 'Users below 13:'
         print train_users[train_users.age < 13]['age'].describe()</pre>
         Users below 13:
                  57.000000
         count
         mean
                    4.438596
                    1.195491
         std
                   1.000000
         min
         25%
                    5.000000
         50%
                    5.000000
         75%
                    5.000000
                    5.000000
         max
         Name: age, dtype: float64
In [12]: # Set ages greater than 99 or less then 13 to NaN
         train_users.loc[train_users.age > 99, 'age'] = np.nan
         train_users.loc[train_users.age < 13, 'age'] = np.nan</pre>
```

In [9]: # Look at Age attribute

```
In [13]:
         # Change to data type of our Categorical Features
         categorical features = [
              'affiliate_provider',
              'country_destination',
              'first_browser',
              'first_device_type',
              'gender',
              'signup_app',
             'signup method'
         ]
         for categorical_feature in categorical_features:
             train_users[categorical_feature] = train_users[categorical_feature].
         astype('category')
In [14]:
         # Change our dates attributes from object to datetime
         train_users['date_account_created'] = pd.to_datetime(train_users['date_a
         ccount created'])
         train_users['date_first_booking'] = pd.to_datetime(train_users['date_fir
         st_booking'])
         train_users['book_create_diff'] = train_users['date_first_booking'] - tr
         ain_users['date_account_created']
         print train_users.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 213451 entries, 0 to 213450
         Data columns (total 13 columns):
         date_account_created
                                 213451 non-null datetime64[ns]
         date_first_booking
                                 88908 non-null datetime64[ns]
                                 117763 non-null category
         gender
                                 123033 non-null float64
         age
         signup_method
                                 213451 non-null category
                                 213451 non-null int64
         signup_flow
         affiliate_provider
                                 213451 non-null category
                                 213451 non-null category
         signup_app
         first_device_type
                                 213451 non-null category
                                 213451 non-null category
         first browser
         country_destination
                                 213451 non-null category
                                 125461 non-null category
         age_bucket
                                 88908 non-null timedelta64[ns]
         book_create_diff
         dtypes: category(8), datetime64[ns](2), float64(1), int64(1), timedelta
         64[ns](1)
         memory usage: 11.4 MB
         None
```

Simple Statistics

As mentioned earlier, the dataset that we used was primarily categorical in nature. As a result, we performed simple statistics for our two continuous variables: Age and Signup Flow

```
In [15]:
         train_users.age.describe()
                   123033.000000
Out[15]: count
         mean
                       36.545805
          std
                       11.655409
                       15.000000
         min
          25%
                       28.000000
          50%
                       34.000000
         75%
                       42.000000
                       99.000000
         max
         Name: age, dtype: float64
In [16]: train_users.signup_flow.describe()
Out[16]: count
                   213451.000000
                        3.267387
         mean
         std
                        7.637707
         min
                        0.000000
         25%
                        0.000000
          50%
                        0.000000
         75%
                        0.000000
                       25.000000
         max
         Name: signup_flow, dtype: float64
```

Data Exploration

Bar Graph: Gender Count

This bar graph depicts how many users we have in our data set by gender. There are 4 different gender categories such as NaN, Female, Male and Other. While we do not know the gender of many of our users, we do know that about 65,000 are Female and 55,000 are Male.

```
In [17]: # Bar graph to show our gender counts
    train_users.gender.value_counts(dropna=False).plot(kind='bar', color='#F
    D5C64', rot=0)
    plt.xlabel('Gender')
    plt.ylabel('Count')
    sns.despine()
    plt.show()
```


Bar Graph: Gender vs. First Browser

This bar graph illustrates the First Browser used by Males and Females when first being tracked by AirBnb. Since we have over 50 browsers in this category, we limited this bar graph to browsers that have at least 1% user usage.

```
In [18]: # Print Bar Graph based on Gender and Browsers
         women = sum(train_users['gender'] == 'FEMALE')
         men = sum(train_users['gender'] == 'MALE')
         female_browsers = train_users.loc[train_users['gender'] == 'FEMALE', 'fi
         rst_browser'].value_counts() / women * 100
         male browsers = train users.loc[train users['gender'] == 'MALE', 'first
         browser'].value_counts() / men * 100
         female_browsers = female_browsers >= 1]
         male_browsers = male_browsers[male_browsers >= 1]
         # Bar width
         width = 0.4
         male_browsers.plot(kind='bar', width=width, color='#4DD3C9', position=0,
         label='Male', rot=90)
         female_browsers.plot(kind='bar', width=width, color='#FFA35D', position=
         1, label='Female', rot=90)
         plt.legend()
         plt.xlabel('First Browser')
         plt.ylabel('Percentage')
         sns.despine()
         plt.show()
```


Bar Graph: Gender vs. First Device

This bar graph presents the First Device used by Males and Females when first (being tracked/signing up) for AirBnb. From this graph we learn that at least 75% of Males and Females signup for AirBnb using either a Mac Desktop or Windows Desktop.

```
In [19]:
         female_device = train_users.loc[train_users['gender'] == 'FEMALE', 'firs
         t_device_type'].value_counts() / women * 100
         male_device = train_users.loc[train_users['gender'] == 'MALE', 'first_de
         vice_type'].value_counts() / men * 100
         # Bar width
         width = 0.4
         male_device.plot(kind='bar', width=width, color='#4DD3C9', position=0, 1
         abel='Male', rot=90)
         female_device.plot(kind='bar', width=width, color='#FFA35D', position=1,
         label='Female', rot=90)
         plt.legend()
         plt.xlabel('First Device')
         plt.ylabel('Percentage')
         sns.despine()
         plt.show()
```


Bar Graph: First Device vs. Destination Country

These graphs are used to get a better understanding of device types and destination countries. As seen in the other plots, the data is synonomous as all countries except for "other" are mainly Mac desktops, then Windows desktops, then Ipad, and Iphone.

```
In [20]:
         MacDesk = sum(train users['first device type'] == 'Mac Desktop')
         WinDesk = sum(train users['first device type'] == 'Windows Desktop')
         iPhone = sum(train_users['first_device_type'] == 'iPhone')
         iPad = sum(train_users['first_device_type'] == 'iPad')
         # Print Bar Graph based on Gender and Browsers
         MacDesk Country = train users.loc[train users['first device type'] == 'M
         ac Desktop', 'country_destination'].value_counts() / MacDesk * 100
         WinDesk Country = train users.loc[train users['first device type'] == 'W
         indows Desktop', 'country_destination'].value_counts() / WinDesk * 100
         iPhone_Country = train_users.loc[train_users['first_device_type'] == 'iP
         hone', 'country_destination'].value_counts() / iPhone * 100
         iPad Country = train users.loc[train users['first device type'] == 'iPa
         d', 'country destination'].value counts() / iPad * 100
         # Bar width
         width = 0.2
         MacDesk_Country.plot(kind='bar', width=width, color='#6534ff', position=
         0, label='Mac Desktop', rot=90)
         WinDesk Country.plot(kind='bar', width=width, color='#62bcfa', position=
         1, label='Windows Desktop', rot=90)
         iPhone_Country.plot(kind='bar', width=width, color='#fccdd3', position=
         2, label='iPhone', rot=90)
         iPad_Country.plot(kind='bar', width=width, color='#bbc4ef', position=3,
         label='iPad', rot=90)
         plt.legend()
         plt.xlabel('Destination Country')
         plt.ylabel('Percentage')
         sns.despine()
         plt.show()
```


Bar Graph: Signup Method vs. Destination Country

This bar graph depicts how the percentage of users who went to each country based on their signup method. We have 3 different categories for Signup Method; Basic, Facebook and Google. The graph shows that 58% of users who sign up through AirBnb, 60% of users who sign up through Facebook and 81% of users who signed up through Google did not choose a destination city.

```
Basic = sum(train users['signup method'] == 'basic')
In [21]:
         Facebook = sum(train_users['signup_method'] == 'facebook')
         Google = sum(train_users['signup_method'] == 'google')
         # Print Bar Graph based on Gender and Browsers
         Basic_Country = train_users.loc[train_users['signup_method'] == 'basic',
         'country destination'].value counts() / Basic * 100
         Facebook_Country= train_users.loc[train_users['signup_method'] == 'face
         book', 'country_destination'].value_counts() / Facebook * 100
         Google_Country = train_users.loc[train_users['signup_method'] == 'googl
         e', 'country_destination'].value_counts() / Google * 100
         # Bar width
         width = 0.2
         Basic_Country.plot(kind='bar', width=width, color='#6534ff', position=0,
         label='Basic', rot=90)
         Facebook_Country.plot(kind='bar', width=width, color='#62bcfa', position
         =1, label='Facebook', rot=90)
         Google_Country.plot(kind='bar', width=width, color='#fccdd3', position=
         2, label='Google', rot=90)
         plt.legend()
         plt.xlabel('Destination Country')
         plt.ylabel('Percentage')
         sns.despine()
         plt.show()
```



```
In [22]: destination_percentage = train_users.country_destination.value_counts()
    / train_users.shape[0] * 100
    destination_percentage.plot(kind='bar',color='#FD5C64', rot=0)
    # Using seaborn can also be plotted
    # sns.countplot(x="country_destination", data=users, order=list(users.co
    untry_destination.value_counts().keys()))
    plt.xlabel('Destination Country')
    plt.ylabel('Percentage')
    sns.despine()
```


Bar Graph: Age Range vs. Destination Country

Based on our calculated field Age Range, this bar graph presents the percentage of each Age Range that chose each Destination Country. From this graph, we observed that 88% of children do not have a first booking (NDF) and the other 12% either choose the US as their First Destination Country.

```
In [23]:
         train users['age range'] = pd.cut(train users.age,[0,16,65,1e6],3,labels
         =['child','adult','senior'])
         #print train users.age range.describe()
         child = sum(train_users['age_range'] == 'child')
         adult = sum(train_users['age_range'] == 'adult')
         senior = sum(train users['age range'] == 'senior')
         child destinations = train users.loc[train users['age range'] == 'chil
         d', 'country_destination'].value_counts() / child * 100
         adult_destinations = train_users.loc[train_users['age_range'] == 'adul
         t', 'country_destination'].value_counts() / adult * 100
         senior destinations = train users.loc[train users['age range'] == 'senio'
         r', 'country_destination'].value_counts() / senior * 100
         child_destinations.plot(kind='bar', width=width, color='#6534ff', positi
         on=0, label='Children', rot=0)
         adult_destinations.plot(kind='bar', width=width, color='#62bcfa', positi
         on=1, label='Adults', rot=0)
         senior_destinations.plot(kind='bar', width=width, color='#fccdd3', posit
         ion=2, label='Seniors', rot=0)
         plt.legend()
         plt.xlabel('Destination Country')
         plt.ylabel('Percentage')
         sns.despine()
         plt.show()
```


Bar Graph: User Signup per Weekday

This bar chart illustrates the number of users that signed up for Airbnb on each day of the week, Sunday through Saturday. From this chart, we can notice a spike of account creation on Monday, then a steady decrease throughout the rest of the week.

```
In [24]: # Count of number of Users who signed up each day of the week
    weekdays = []
    for date in train_users.date_account_created:
        weekdays.append(date.weekday())

weekdays = pd.Series(weekdays)

sns.barplot(x = weekdays.value_counts().index, y=weekdays.value_counts
    ().values, order=range(0,7))
    plt.xlabel('Week Day (Mon. - Sun.)')
    sns.despine()
```


Bar Graph: User Signup per Month

This bar chart illustrates the number of users that signed up for Airbnb on each month, January through December. From this chart, we notice an increase in user accounts during the first half of the month. During the 2nd half of the year, there is a sharp decline between June and July, then is steady throughout the rest of the year.

```
In [26]: # Count of number of Users who signed up each month
    months = []
    for date in train_users.date_account_created:
        months.append(date.month)

months = pd.Series(months)

sns.barplot(x = months.value_counts().index, y=months.value_counts().values, order=range(1,13))
    plt.xlabel('Months')
    sns.despine()
```


Bar Graph: Gender vs. Destination Country

This bar chart presents the percentage of Males and Females that chose each country as their First Destination. We notice that 49% of both Males and Females do not choose First Destination Country. Also, about 35% of Males and Females choose the US as the First Destination Country.

```
In [27]:
         # Print Bar Graph based on Gender and Destination
         women = sum(train_users['gender'] == 'FEMALE')
         men = sum(train_users['gender'] == 'MALE')
         Male_Country = train_users.loc[train_users['gender'] == 'MALE', 'country
         _destination'].value_counts() / men * 100
         Female_Country= train_users.loc[train_users['gender'] == 'FEMALE', 'cou
         ntry_destination'].value_counts() / women * 100
         # Bar width
         width = 0.3
         Male Country.plot(kind='bar', width=width, color='#6534ff', position=0,
         label='Male', rot=90)
         Female Country.plot(kind='bar', width=width, color='#62bcfa', position=
         1, label='Female', rot=90)
         plt.legend()
         plt.xlabel('Destination Country')
         plt.ylabel('Percentage')
         sns.despine()
         plt.show()
```


Time Series

This series plots the signups for new Airbnb accounts on a yearly basis from 2010-2014

```
In [28]: # Time series plot for signup dates
    sns.set_style("whitegrid", {'axes.edgecolor': '0'})
    sns.set_context("poster", font_scale=1.1)
    train_users.date_account_created.value_counts().plot(kind='line', linew
    idth=1.2, color='#FD5C64')
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x102e10a10>

Box & Whiskers Plot

This plot visually compares the ages of every destination country.

In [29]: # plotting a box and whiskers plot that demonstrates Age to Travel Destination
 fig, ax = plt.subplots(nrows=1, ncols=1,figsize=(15, 8))
 sns.boxplot(x='country_destination', y='age', data=train_users, palette = "muted", ax = ax)
 ax.set_ylim([10, 60])

Out[29]: (10, 60)

Scatterplot: Age Bucket vs Book Create Difference

This scatterplot represents the number of days it took a user to book a first destination from when they signed up based on our created variable Age Buckets.

Scatterplot: Age Range vs Book Create Difference

This scatterplot represents the number of days it took a user to book a first destination from when they signed up based on our created variable Age Range. We are still looking into why we receive negative values for some of the users. An interesting take away from this graph is that children, who do book a first destination, do so in the first 80 days after creating an account.

In [31]: # Scatterplot for Age Bucket vs Book Create Difference
sns.stripplot(x='age_bucket', y=train_users.book_create_diff.astype('timedelta64[D]'), data=train_users);

Interesting Features

The most interesting feature is the exponential growth of user signups for Airbnb. As seen in the time series above, the peak signup month is June for each new year. Users typically had the account creation traffic on Tuesdays and in June.

We found that the children accounts (ages =< 15) were one of the highest demographics for creating an account but not actually booking a room. Additionally, for children users, they only booked US destinations.

Other Features that Could Be Added

We did add two feature. One was 'age bucket' and the other 'date-diff' (the difference of creation date minus date booked)

Additionally some features that could get added would be the other csv's attributes. We originally concatnated all of the csv files to have a master file, however we ran into some import errors. As a result we focused on the train_users dataset. Moving forwards with this project, it would definitely be worthwhile to properly add in the other features such as population, country data, latitude, longitude, etc.