Visualization & Exploration of Airbnb User
booking

For Airbnb data is an integral part of their business model, used to identify individuals without the
annoyance of surveys and feedback. The Airbnb data we have access to is collected with the intention
of gathering information about the customers; the tables used in this project were created for predicting
the first booked destination for United States Airbnb users.

The importance of this data lies in the information it gives about the individual customers. In order to
best predict an individual’s travel location, one would expect the individual to make similar travel
decisions to those who have analogous tendencies. The determinant of the usefulness of the data is
the extent to which we can compare individuals’ tendencies and group like-minded individuals.

The measure of a good prediction algorithm in this case would be the percentage of correctly identified
“first booked destination” countries. If an algorithm is able to accurately predict the destination for 80%
of individuals then algorithms are successful because of the potential impact. There is room for error
due to the lack of detailed data that one often obtains from new users. With an algorithm success rate
of 80%, individuals can have locations recommended that may impact the chances a person books a
trip. Ultimately, any accuracy rate which increases company revenue, should be deemed successful,
but those that create more repeat users will be the best.

Our data has a total of 16 attributes with 213,451 seperate records. The predicted value is
"country_destination"

Attribute Information
id
Identifies each unique user

date_account_created

The date an account was created

timestamp_first_active

Time stamp of the first activity of the user in absolute terms

date_first_booking

The date the first booked occurred

gender

The identification of an individual as Male, Female, or unidentified (unknown)

age

The years in which a person has been alive

signup_method

The method in which an account was created (Basic or Facebook)

signup_flow

the page from which the user came to sign up

language

international language preference

affiliate_channel

paid marketing type

affiliate_provider

location of marketing (Craiglist, Direct, Google, Other and Yahoo)

first_affiliate_tracked

first marketing interaction before sign up

signup_app

type of application used for sign up (Android, iOS, Moweb, Web)

first_device_type

The device used during sign-up

first_browser

The internet browser that was used to sign up

country_destination

Destination country for the account's first booking

For more information on the data set can be found at https://www.kaggle.com/c/airbnb-recruiting-new-
user-bookings/data (https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/data)

https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/data

Verify Data Quality

As mentioned in the previous section, the attributes Age and Gender have many missing values.

Missing values for Age are noted as null, while missing values for Gender are noted as '-unknown-'.

In [2]:

In [3]:

In [4]:

Out[4]:

Import mathematical Libraries for Python
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Draw 1inline
%matplotlib inline

Set figure aesthetics
sns.set_style("white", {'ytick.major.size': 10.0})
sns.set _context("poster", font scale=1.1)

Create our dataframes

train_users = pd.read csv('/Users/kareemwilliams/DATAMINING/train_users_
2.csv')

test_users = pd.read_csv('/Users/kareemwilliams/DATAMINING/test_users.cs
v')

print 'We have', train_users.shape[@], 'users in the training set.’

We have 213451 users in the training set.

Merge our 2 dataframes, train_users and test users
#tusers = pd.concat((train_users, test users), axis=0, ignore_index=True)

train_users.head()

id date_account_created |timestamp_first_active | date_first_bookir
0 [gxn3p5htnn [2010-06-28 20090319043255 NaN
1|820tgsjxq7 |2011-05-25 20090523174809 NaN
2 [4ft3gnwmix [2010-09-28 20090609231247 2010-08-02
3 [bjjt8pjhuk 2011-12-05 20091031060129 2012-09-08
4 (87mebub9p4 |2010-09-14 20091208061105 2010-02-18

In [5]:

Out[5]:

In [6]:

Replace null with NaN for Age attribute

train_users.age.replace(np.nan, @, inplace=True)
train_users['age'] = train_users['age'].astype('Int64")
train_users.age.replace(@, np.nan, inplace=True)

Delete columns that we will not use

del train_users['first_affiliate_tracked']

del train_users['affiliate_channel’]
del train_users['timestamp_first_active']

del train_users['id']

del train_users['language’]

train_users.head()

date_account_created | date_first_booking |gender |age [signup_method
0|2010-06-28 NaN i NaN [facebook
unknown-
112011-05-25 NaN MALE 38 |facebook
2(2010-09-28 2010-08-02 FEMALE |56 |basic
3(2011-12-05 2012-09-08 FEMALE |42 |facebook
412010-09-14 2010-02-18 i 41 |basic
unknown-

Create Age Bucket variable

train_users['age_bucket'] =

pd.cut(train_users.age,[0,9,19,29,39,49,59,6

9,79,89,99,1e6],3,labels=['0-9','10-19",'20-29",'30-39",'40-49",'50-5
9','60-69','70-79"','80-89",'90-99", '100+"'])

age 3039 =
total age =

print 'About', int(float(age_3039)/total_age * 100) ,'% our users are be

tween the ages of 30 and 39' + '\n'
print 'Here are some statistics about the Age Bucket attribute:’
print train_users.age_bucket.describe()

sum(train_users['age bucket'] == '30-39')
train_users['age_bucket'].count()

About 37 % our users are between the ages of 30 and 39

Here are some statistics about the Age Bucket attribute:

count 125461
unique 11
top 30-39
freq 47570

Name: age_bucket, dtype: object

In [7]:

Out[7]:

In [8]:

Out[8]:

Replace '-unknown-' with NaN for Gender attribute
train_users.gender.replace('-unknown-', np.nan, inplace=True)

#users_nan =

#tusers_nan[users_nan > @].drop('country destination')

train_users.head(10)

(users.isnull().sum() / users.shape[©]) * 100

date_account_created |date_first_booking |gender |age |sighup_method |si
0(2010-06-28 NaN NaN NaN [facebook 0
112011-05-25 NaN MALE 38 |facebook 0
2|2010-09-28 2010-08-02 FEMALE [56 |basic 3
312011-12-05 2012-09-08 FEMALE [42 |[facebook 0
4(2010-09-14 2010-02-18 NaN 41 |basic 0
512010-01-01 2010-01-02 NaN NaN | basic 0
62010-01-02 2010-01-05 FEMALE (46 |basic 0
712010-01-03 2010-01-13 FEMALE (47 [basic 0
812010-01-04 2010-07-29 FEMALE [50 [basic 0
912010-01-04 2010-01-04 NaN 46 |basic 0

Look at Date First Booking attribute
print 'We have', int((float(train_users.date_first booking.isnull().sum

()) / train_users.shape[@]) * 100),

ooking in the training data’
print '\n' + 'Here are some statistics about the Date First Booking attr

ibute:’

train_users.date_first_booking.describe()

v

'% of missing values at date_first_b

We have 58 % of missing values at date_first_booking in the training da

ta

Here are some statistics about the Date First Booking attribute:

count 88908
unique 1976
top 2014-05-22
freq 248

Name: date_first_booking, dtype: object

In [9]:

In [10]:

In [11]:

In [12]:

Look at Age attribute
print 'Here are some statistics about the Age attribute:’
print train_users.age.describe()

Here are some statistics about the Age attribute:
count 125461 .000000

mean 49.668335
std 155.666612
min 1.000000
25% 28.000000
50% 34.000000
75% 43.000000
max 2014 .000000

Name: age, dtype: float64
print 'Users above 99:'
print train_users[train_users.age > 99]['age'].describe()

Users above 99:
count 2371.000000

mean 731.693800
std 895.193534
min 100.000000
25% 105.000000
50% 105.000000
75% 2014.000000
max 2014.000000

Name: age, dtype: float64
print 'Users below 13:'
print train_users[train_users.age < 13]['age'].describe()

Users below 13:
count 57 .000000

mean 4.438596
std 1.195491
min 1.000000
25% 5.000000
50% 5.000000
75% 5.000000
max 5.000000

Name: age, dtype: float64

Set ages greater than 99 or less then 13 to NaN
train_users.loc[train_users.age > 99, ‘'age'] = np.nan
train_users.loc[train_users.age < 13, 'age'] = np.nan

In [13]:

In [14]:

Change to data type of our Categorical Features
categorical_features = [

'affiliate_provider',

'country_destination’',

'first_browser',

'first_device_type',

'gender’,

'signup_app’,

'signup_method'

]

for categorical feature in categorical_ features:
train_users[categorical_feature] = train_users[categorical_ feature].
astype('category')

Change our dates attributes from object to datetime
train_users['date_account_created'] = pd.to_datetime(train_users['date_a
ccount_created'])

train_users['date_first booking'] = pd.to_datetime(train_users['date fir
st_booking'])

train_users['book_create_diff'] = train_users['date_first_booking'] - tr
ain_users['date_account_created']

print train_users.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 213451 entries, © to 213450

Data columns (total 13 columns):

date_account_created 213451 non-null datetime64[ns]

date_first_booking 88908 non-null datetime64[ns]
gender 117763 non-null category

age 123033 non-null float64
signup_method 213451 non-null category
signup_flow 213451 non-null int64
affiliate provider 213451 non-null category
signup_app 213451 non-null category
first_device_type 213451 non-null category
first browser 213451 non-null category
country_destination 213451 non-null category
age_bucket 125461 non-null category
book_create_diff 88908 non-null timedelta64[ns]
dtypes: category(8), datetime64[ns](2), float64(1l), int64(1l), timedelta
64[ns](1)

memory usage: 11.4 MB
None

Simple Statistics

As mentioned earlier, the dataset that we used was primarily categorical in nature. As a result, we
performed simple statistics for our two continuous variables: Age and Signup Flow

In [15]: train_users.age.describe()

Out[15]: count 123033.000000

mean 36.545805
std 11.655409
min 15.000000
25% 28.000000
50% 34.000000
75% 42 .000000
max 99.000000

Name: age, dtype: float64

In [16]: train_users.signup_flow.describe()

Out[16]: count 213451.000000

mean 3.267387
std 7.637707
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 25.000000

Name: signup_flow, dtype: float64

Data Exploration

Bar Graph: Gender Count

This bar graph depicts how many users we have in our data set by gender. There are 4 different
gender categories such as NaN, Female, Male and Other. While we do not know the gender of many of
our users, we do know that about 65,000 are Female and 55,000 are Male.

In [17]: # Bar graph to show our gender counts
train_users.gender.value_counts(dropna=False).plot(kind="bar', color="#F
D5C64', rot=0)
plt.xlabel('Gender")
plt.ylabel('Count")
sns.despine()
plt.show()

100000

80000

60000 —

Count

40000 —

20000 —

FEMALE MALE OTHER
Gender

Bar Graph: Gender vs. First Browser

This bar graph illustrates the First Browser used by Males and Females when first being tracked by
AirBnb. Since we have over 50 browsers in this category, we limited this bar graph to browsers that
have at least 1% user usage.

In [18]:

Print Bar Graph based on Gender and Browsers

women = sum(train_users['gender'] == 'FEMALE")

men = sum(train_users['gender'] == 'MALE")

female_browsers = train_users.loc[train_users['gender'] == 'FEMALE', 'fi
rst_browser'].value_counts() / women * 100

male_browsers = train_users.loc[train_users['gender'] == 'MALE', 'first_

browser'].value counts() / men * 100

female_browsers = female_browsers[female_browsers >= 1]
male_browsers = male_browsers[male_browsers >= 1]

Bar width
width = 0.4

male browsers.plot(kind='bar', width=width, color="#4DD3C9', position=0,
label="Male', rot=90)

female_browsers.plot(kind="bar', width=width, color="#FFA35D', position=
1, label="Female', rot=90)

plt.legend()
plt.xlabel('First Browser"')
plt.ylabel('Percentage’)

sns.despine()
plt.show()

[Male
35 0 Female
a0 -
25 —

Percentage
=
|

—
w
|

IE

)] = =
E 3 L
g 3 2
&) [

Mobile Safari
-unknown-

First Browser

Bar Graph: Gender vs. First Device

This bar graph presents the First Device used by Males and Females when first (being tracked/signing
up) for AirBnb. From this graph we learn that at least 75% of Males and Females signup for AirBnb
using either a Mac Desktop or Windows Desktop.

In [19]: female_device = train_users.loc[train_users['gender'] == 'FEMALE', 'firs
t_device_type'].value_counts() / women * 100
male_device = train_users.loc[train_users['gender'] == 'MALE', 'first_de
vice type'].value counts() / men * 100

Bar width
width = 0.4

male_device.plot(kind='bar', width=width, color="#4DD3C9', position=0, 1
abel='Male', rot=90)

female_device.plot(kind='bar', width=width, color="#FFA35D', position=1,
label="Female', rot=90)

plt.legend()
plt.xlabel('First Device')
plt.ylabel('Percentage')

sns.despine()
plt.show()

[Male
1 Female
40
o 30
o
[1+]
8
c
[15]
o
[14]
a 20
10
0
&) 2 ® S 2 © 5 .
= = 9 oL =} S 2 £ =
o 2 o 1= a = O S
o O c - = by
] = o (= @D
&) w = o o [=) c
© = @ o = = 9
= 3 = £ £ 8 T
£ S a =
; 1]
£
75}
First Device

Bar Graph: First Device vs. Destination Country

These graphs are used to get a better understanding of device types and destination countries. As
seen in the other plots, the data is synonomous as all countries except for "other" are mainly Mac
desktops, then Windows desktops, then Ipad, and Iphone.

In [20]:

MacDesk = sum(train_users['first_device type'] == 'Mac Desktop')
WinDesk = sum(train_users['first_device_type'] == 'Windows Desktop')
iPhone = sum(train_users['first_device_type'] == "iPhone")

iPad = sum(train_users['first_device type'] == "'

Print Bar Graph based on Gender and Browsers

MacDesk Country = train_users.loc[train_users['first device type'] == 'M
ac Desktop', 'country destination'].value counts() / MacDesk * 100
WinDesk Country = train_users.loc[train_users['first_device _type'] == 'W
indows Desktop', 'country _destination'].value_counts() / WinDesk * 100
iPhone_Country = train_users.loc[train_users['first device type'] == 'iP
hone', 'country_destination'].value counts() / iPhone * 100

iPad_Country = train_users.loc[train_users['first_device type'] == 'iPa
d', 'country _destination'].value_counts() / iPad * 100

Bar width
width = 0.2

MacDesk Country.plot(kind='bar', width=width, color='#6534ff', position=
0, label="Mac Desktop', rot=90)

WinDesk_Country.plot(kind="bar', width=width, color='#62bcfa', position=
1, label='Windows Desktop', rot=99)

iPhone_Country.plot(kind="bar', width=width, color="#fccdd3', position=

2, label="iPhone', rot=90)

iPad_Country.plot(kind="'bar', width=width, color="#bbc4ef', position=3,

label="iPad', rot=90)

plt.legend()
plt.xlabel('Destination Country')
plt.ylabel('Percentage')

sns.despine()
plt.show()

70 —

Bl Mac Desktop
_ 01 Windows Desktop
60 I iPhone
1 iPad
50 -
S 40
]
=
)]
=
3 2 o
20 -
10
0 H‘_Iﬂr.'_"'—-l_i'_-l_ll_-.—..—_ -
5 8 § E = 8 4 & 2 4 2 k&
o

Destination Country

Bar Graph: Signup Method vs. Destination Country

This bar graph depicts how the percentage of users who went to each country based on their signup
method. We have 3 different categories for Signup Method; Basic, Facebook and Google. The graph
shows that 58% of users who sign up through AirBnb, 60% of users who sign up through Facebook
and 81% of users who signed up through Google did not choose a destination city.

In [21]:

Basic = sum(train_users['signup method'] == 'basic')
Facebook = sum(train_users['signup_method'] == 'facebook")
Google = sum(train_users['signup_method'] == 'google')

Print Bar Graph based on Gender and Browsers

Basic_Country = train_users.loc[train_users['signup_method'] == 'basic',
"country_destination'].value_counts() / Basic * 100

Facebook Country= train_users.loc[train_users['signup _method'] == 'face
book', 'country destination'].value counts() / Facebook * 100
Google_Country = train_users.loc[train_users['signup_method'] == 'googl
e', 'country destination'].value_counts() / Google * 100

Bar width
width = 0.2

Basic_Country.plot(kind="bar', width=width, color="#6534ff"', position=0,
label="Basic’', rot=90)

Facebook_Country.plot(kind="bar', width=width, color="#62bcfa', position
=1, label='Facebook', rot=99)

Google_Country.plot(kind="bar"', width=width, color="#fccdd3', position=
2, label='Google', rot=99)

plt.legend()
plt.xlabel('Destination Country")
plt.ylabel('Percentage’)

sns.despine()
plt.show()

Percentage

3

8

8

8

10

NDF

us

other

o
L

I Basic

0 Facebook

1 Google
=E @2 E & 3 2 8 =

Destination Country

In [22]: destination_percentage = train_users.country destination.value_counts()
/ train_users.shape[@] * 100
destination_percentage.plot(kind="bar',color="#FD5C64"', rot=0)

Using seaborn can also be plotted

sns.countplot(x="country destination”, data=users, order=List(users.co
untry_destination.value_counts().keys()))

plt.xlabel('Destination Country")

plt.ylabel('Percentage')

sns.despine()

60 —

5
I

Percentage
8
I

10

D— = —

NDF US other FR IT GB ES CA DE NL AU PT
Destination Country

Bar Graph: Age Range vs. Destination Country

Based on our calculated field Age Range, this bar graph presents the percentage of each Age Range
that chose each Destination Country. From this graph, we observed that 88% of children do not have a
first booking (NDF) and the other 12% either choose the US as their First Destination Country.

In [23]:

train_users['age_range'] = pd.cut(train_users.age,[0,16,65,1e6],3,labels
=['child', 'adult’, 'senior'])
#print train_users.age_range.describe()

child = sum(train_users['age_range'] == 'child')
adult = sum(train_users['age_range'] == 'adult')
senior = sum(train_users['age_range'] == 'senior')

']
']

child_destinations = train_users.loc[train_users['age_range'] == 'chil
d', 'country destination'].value_counts() / child * 100
adult_destinations = train_users.loc[train_users['age_range'] == 'adul
t', 'country_destination'].value_counts() / adult * 100
senior_destinations = train_users.loc[train_users|['age range'] == 'senio
r', 'country destination'].value_counts() / senior * 100

child destinations.plot(kind="bar', width=width, color='#6534ff', positi
on=0, label='Children', rot=0)

adult_destinations.plot(kind="bar"', width=width, color='#62bcfa', positi
on=1, label='Adults', rot=0)

senior_destinations.plot(kind="bar', width=width, color="#fccdd3', posit
ion=2, label='Seniors', rot=0)

plt.legend()
plt.xlabel('Destination Country')
plt.ylabel('Percentage’)

sns.despine()
plt.show()

B Children
80 0 Adults
| Seniors

Percentage
g &8 8 g8 3
| | | | L

S
!

10

NDF US other FR IT GB ES DE CA NL AU PT
Destination Country

Bar Graph: User Signup per Weekday

This bar chart illustrates the number of users that signed up for Airbnb on each day of the week,
Sunday through Saturday. From this chart, we can notice a spike of account creation on Monday, then
a steady decrease throughout the rest of the week.

In [24]: # Count of number of Users who signed up each day of the week
weekdays = []
for date in train_users.date_account_created:
weekdays.append(date.weekday())
weekdays = pd.Series(weekdays)
sns.barplot(x = weekdays.value counts().index, y=weekdays.value counts
().values, order=range(0,7))

plt.xlabel('Week Day (Mon. - Sun.)")
sns.despine()

40000 —

35000

30000

25000

20000

15000

10000

5000

0 1 2 3 4 5 6
Week Day (Mon. - Sun.)

Bar Graph: User Signup per Month

This bar chart illustrates the number of users that signed up for Airbnb on each month, January
through December. From this chart, we notice an increase in user accounts during the first half of the
month. During the 2nd half of the year, there is a sharp decline between June and July, then is steady
throughout the rest of the year.

In [26]: # Count of number of Users who signed up each month
months = []
for date in train_users.date_account_created:
months.append(date.month)
months = pd.Series(months)
sns.barplot(x = months.value counts().index, y=months.value counts().val
ues, order=range(1,13))

plt.xlabel('Months")
sns.despine()

30000 —

25000

20000

15000

10000

5000

1 2 3 4 5 6 7 8 9 10 1" 12
Months

Bar Graph: Gender vs. Destination Country

This bar chart presents the percentage of Males and Females that chose each country as their First
Destination. We notice that 49% of both Males and Females do not choose First Destination Country.
Also, about 35% of Males and Females choose the US as the First Destination Country.

In [27]:

Print Bar Graph based on Gender and Destination

women = sum(train_users['gender'] == 'FEMALE")

men = sum(train_users['gender'] == 'MALE")

Male Country = train_users.loc[train_users['gender'] == 'MALE', 'country
_destination'].value_counts() / men * 100

Female_Country= train_users.loc[train_users['gender'] == 'FEMALE', 'cou

ntry destination'].value_counts() / women * 100

Bar width
width = 0.3

Male_Country.plot(kind="bar', width=width, color="#6534ff', position=0,
label="Male', rot=90)

Female Country.plot(kind='bar', width=width, color='#62bcfa’', position=
1, label="Female', rot=99)

plt.legend()
plt.xlabel('Destination Country')
plt.ylabel('Percentage')

sns.despine()

plt.show()
50 —
el Male
0 Female
40 H
(] 30
[@)]
o
c
[16]
o
1]
a 20 o
10 —
0
5 8 2 & = 8 @ 3 4 2 2 &
o

Destination Country

Time Series

This series plots the signups for new Airbnb accounts on a yearly basis from 2010-2014

In [28]: # Time series plot for signup dates
sns.set_style("whitegrid", {'axes.edgecolor': '0'})
sns.set_context("poster"”, font_scale=1.1)
train_users.date account_created.value counts().plot(kind='line', 1linew
idth=1.2, color="#FD5C64")

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x102el0ale>

700

) . ‘
- WM m W W Wl M N\ ”
gl

W..ﬁm‘*'f'mwm

0 P T 4 it

Q Q AN
QN QN Q
pﬁ% N Q7 o

200

100

A 1 {2 3 & A
QN o\ N N N QN

Box & Whiskers Plot

This plot visually compares the ages of every destination country.

In [29]: # plotting a box and whiskers plot that demonstrates Age to Travel Desti
nation
fig, ax = plt.subplots(nrows=1, ncols=1,figsize=(15, 8))
sns.boxplot(x="'country_destination', y='age', data=train_users, palette

shete

ax.set_ylim([10, 60])
AU CA DE ES FR GB IT NDF NL PT us other
country_destination

out[29]: (10, 60)

60

-

10

Scatterplot: Age Bucket vs Book Create Difference

This scatterplot represents the number of days it took a user to book a first destination from when they
signed up based on our created variable Age Buckets.

In [30]: # Scatterplot for Age Range vs Book Create Difference
sns.stripplot(x="age_range', y=train_users.book_create_diff.astype('time
delta64[D]'), data=train_users);

500
400
300
200
= :
'Gl]
o 100 §
M g
o
° 0 : :
=
o
8
-100
-200 .
-300 g
-400
child adult senior
age_range

Scatterplot: Age Range vs Book Create Difference

This scatterplot represents the number of days it took a user to book a first destination from when they
signed up based on our created variable Age Range. We are still looking into why we receive negative
values for some of the users. An interesting take away from this graph is that children, who do book a
first destination, do so in the first 80 days after creating an account.

In [31]: # Scatterplot for Age Bucket vs Book Create Difference

sns.stripplot(x="age_bucket', y=train_users.book _create diff.astype('tim
edelta64[D]'), data=train_users);

500

400

300

200

100

book_create_diff
=

-100

=200

-300

-400

09 1019 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100+
age_hucket

Interesting Features

The most interesting feature is the exponential growth of user signups for Airbnb. As seen in the time
series above, the peak signup month is June for each new year. Users typically had the account
creation traffic on Tuesdays and in June.

We found that the children accounts (ages =< 15) were one of the highest demographics for creating

an account but not actually booking a room. Additionally, for children users, they only booked US
destinations.

Other Features that Could Be Added

We did add two feature. One was 'age bucket' and the other 'date-diff' (the difference of creation date
minus date booked)

Additionally some features that could get added would be the other csv's attributes. We originally
concatnated all of the csv files to have a master file, however we ran into some import errors. As a
result we focused on the train_users dataset. Moving forwards with this project, it would definitely be
worthwhile to properly add in the other features such as population, country data, latitude, longitude,
etc.

