Logistic & SVM Regression of Airbnb New User
Booking

In [1]: # Import mathematical Libraries for Python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Draw inline
%matplotlib inline

Set figure aesthetics
sns.set_style("white", {'ytick.major.size': 10.0})
sns.set_context("poster", font_scale=1.1)

Create our dataframes
train_users = pd.read _csv('train_users 2.csv')

In [2]: print ('We have', train_users.shape[@], 'users in the training set.')

train_users.head(5)
train_users.info()

('We have', 213451, 'users in the training set.')
<class 'pandas.core.frame.DataFrame'>

Int64Index: 213451 entries, © to 213450

Data columns (total 16 columns):

id 213451 non-null object
date_account_created 213451 non-null object
timestamp_first_active 213451 non-null int64
date_first booking 88908 non-null object
gender 213451 non-null object
age 125461 non-null float64
signup_method 213451 non-null object
signup_flow 213451 non-null int64
language 213451 non-null object
affiliate_channel 213451 non-null object
affiliate provider 213451 non-null object
first _affiliate_tracked 207386 non-null object
signup_app 213451 non-null object
first_device_type 213451 non-null object
first browser 213451 non-null object
country_destination 213451 non-null object

dtypes: float64(1l), int64(2), object(13)
memory usage: 27.7+ MB

Data Cleansing and Statistics

Our dataset began with 213,451 observations. After going through our data cleansing process, our
dataset included approximately 55,000 observations. Since we wanted to maintain data integrity, we
systematically went through the dataset and eliminated all observations that were missing values.

In [3]:

out[3]:

In [4]:

Delete these dimensions because they were not of use to our analysis

del train_users['first_affiliate_tracked']

del train_users['affiliate_channel']

del train_users['timestamp_first_active']

del train_users['id']

train_users.head(10)

date_account_created | date_first_booking |gender |age [signup_method |s

0(2010-06-28 NaN) NaN [facebook 0
unknown-

112011-05-25 NaN MALE 38 |facebook 0

2(2010-09-28 2010-08-02 FEMALE |56 |basic 3

3(2011-12-05 2012-09-08 FEMALE |42 |facebook 0

412010-09-14 2010-02-18) 41 |basic 0
unknown-

5(2010-01-01 2010-01-02 i NaN [basic 0
unknown-

6(2010-01-02 2010-01-05 FEMALE |46 |basic 0

7(2010-01-03 2010-01-13 FEMALE |47 |basic 0

8(2010-01-04 2010-07-29 FEMALE |50 |basic 0

9(2010-01-04 2010-01-04) 46 |basic 0
unknown-

cast to Dates

train_users['date_account created'] = pd.to _datetime(train_users['date_a

ccount_created'])

train_users['date_first_booking'] = pd.to_datetime(train_users['date_fir

st_booking'])

Looking into the Age variable, we determined that about 90,000 of our observations have a null or
invalid value. We noticed that the Age variable had many errors as there were values from 0 to 2014,
which leads us to beleive that users errored in adding those values. As a result, we set limits of less
than 16 and greater than 99

In [5]:

Count to see how many of our Age observations are invalid

age NaN = train_users['age'].isnull().sum()

age _Invalid_Less = train_users[train_users.age <= 15]['age’'].count()
age_Invalid_Greater = train_users[train_users.age > 99]['age'].count()
total _age = len(train_users)

print ('Total Null Age Count:' , age_NaN)

print ('Total Invalid Age Count:' , (age_Invalid_Less + age_Invalid_Grea
ter))

print ('Total Age Count:', total_age)

('Total Null Age Count:', 87990)
('Total Invalid Age Count:', 2436)
('Total Age Count:', 213451)

Looking into the Gender variable, we determined that about 95,000 of our observations have a null
value. For this mini lab, we chose not to extrapolate the Gender variable and instead decided to delete
all the null rows. Perhaps in another lab, we could preserve this data by extrapolating this variable.

In [6]:

Count to see how many of our Gender observations are 1invalid where gen
der = unknown

train_users.gender.replace('-unknown-', np.nan, inplace=True)

gen_NaN = train_users['gender'].isnull().sum()

gen O = train_users[train_users.gender == 'OTHER']['gender'].count()
gen_M = train_users[train_users.gender == 'MALE']['gender'].count()
gen_F = train_users[train_users.gender == 'FEMALE']['gender'].count()

total_gen = len(train_users)

print ('Total Null Gender Count:' , gen_NaN)
print ('Total Other Gender Count:' , gen_0)
print ('Total Male Gender Count:' , gen_M)
print ('Total Female Gender Count:' , gen_F)
print ('Total Gender Count:', total_gen)

('Total Null Gender Count:', 95688)
('Total Other Gender Count:', 282)
('Total Male Gender Count:', 54440)
('Total Female Gender Count:', 63041)
('Total Gender Count:', 213451)

In [7]:

In [8]:

In [9]:

out[9]:

We decided to clean up the date_first_booking variable, because it was highly correlated with booking

Drop all of our 1invalid observations where Age were less than or equal
to 15, greater than to equal 100
or null

clean_users = train_users.dropna(subset=["age'])
clean_users = clean_users.drop(clean_users[clean_users.age <=15].index)
clean_users = clean_users.drop(clean_users[clean_users.age > 99].index)

print ('After dropping rows with invalid/null ages, we have', clean_user
s.shape[@], 'observations in the training set.')

('After dropping rows with invalid/null ages, we have', 123025, 'observ
ations in the training set.')

Drop all of our 1invalid observations where gender = unknown
clean_users = clean_users.dropna(subset=['gender'])

print ('After dropping rows with null gender, we have', clean_users.shap
e[@], 'observations in the training set.')

('After dropping rows with null gender, we have', 106905, 'observations
in the training set.')

clean_users.head(10)

date_account_created | date_first_booking |gender |age [signup_method |si
1 [2011-05-25 NaT MALE (38 [facebook 0
2 |2010-09-28 2010-08-02 FEMALE |56 |basic 3
3 |12011-12-05 2012-09-08 FEMALE (42 |facebook 0
6 |2010-01-02 2010-01-05 FEMALE [46 |basic 0
7 |2010-01-03 2010-01-13 FEMALE (47 |basic 0
8 |2010-01-04 2010-07-29 FEMALE [50 |basic 0
10 {2010-01-04 2010-01-06 FEMALE [36 |basic 0
11 {2010-01-05 NaT FEMALE |47 [basic 0
13 (2010-01-05 NaT FEMALE |37 |basic 0
14 (2010-01-07 NaT FEMALE |36 |basic 0

v

and traveling in our previous lab. We found that certain days of the week and certain months saw high

traffic in users.

In [10]:

In [11]:

In [12]:

Out[12]:

Count to see how many of our Date of First Booking observations are nu

L

dfb_NaN

total _dfb = len(clean_users)

print ('Total Null Date First Booking:' , dfb_NaN)

print ('Total DFB Count:', total dfb)

('Total Null Date First Booking:', 51250)

('Total DFB Count:', 106905)

clean _users['date_first _booking'].isnull().sum()

Drop all of the null Date of First Booking observations

clean_users =

clean_users.dropna(subset=['date_first_booking'])

print ('After dropping rows with null Date of First Booking, we have', c

lean_users.shape[0],

('After dropping rows with null Date of First Booking, we have', 55655,
'observations in the training set.')

clean_users.head(10)

'observations in the training set.')

date_account_created | date_first_booking |gender |age [signup_method |si
2 (2010-09-28 2010-08-02 FEMALE |56 |basic 3
3 [2011-12-05 2012-09-08 FEMALE |42 |facebook 0
6 [2010-01-02 2010-01-05 FEMALE |46 |basic 0
7 |2010-01-03 2010-01-13 FEMALE |47 [basic 0
8 |2010-01-04 2010-07-29 FEMALE |50 |basic 0
102010-01-04 2010-01-06 FEMALE |36 |basic 0
1512010-01-07 2010-01-08 FEMALE |33 |basic 0
19(2010-01-10 2010-01-10 FEMALE |29 [basic 0
21|2010-01-10 2010-01-11 MALE |30 |basic 0
25(2010-01-12 2010-01-15 FEMALE |26 |basic 0

v

In [13]: # Check if we have any more missing values in our dataset

(clean_users.isnull().sum() / clean_users.shape[0]) * 100

Out[13]: date_account created
date_first_booking
gender
age
signup_method
signup_flow
language
affiliate provider
signup_app
first_device_type
first browser
country_destination
dtype: floate4

OO OO O0OOPOOOOOOOO

In [14]: clean_users.describe().transpose()

Out[14]: count | mean std min | 25% | 50% | 75% [max

age 55655 |36.011589 | 11.067755 (16 (28 |33 (41 |99

signup_flow | 55655 |2.367981 |6.354137 |0 |0 0 0 25

One-Hot Encoding

For this section, we implemented one-hot encoding to change the datatypes from categorical values to
ordinal integers. Using this method, we were able to clean-up our dataset for Logistic analysis and
SVM modeling.

In [15]:

Out[15]:

Instead of creating a new column for every country, we decided to stick with 1 Country_Destination

perform one-hot encoding of the categorical data "gender"

tmp_df = pd.get_dummies(clean_users.gender,prefix="gender")
clean_users =
dataframe

clean_users.head(10)

pd.concat((clean_users,tmp df),axis=1) # add back into the

date_account_created | date_first_booking |gender |age [signup_method |si
2 |2010-09-28 2010-08-02 FEMALE |56 |basic 3
3 |2011-12-05 2012-09-08 FEMALE |42 [facebook 0
6 |2010-01-02 2010-01-05 FEMALE (46 |basic 0
7 |2010-01-03 2010-01-13 FEMALE (47 |basic 0
8 |2010-01-04 2010-07-29 FEMALE [50 |basic 0
10 {2010-01-04 2010-01-06 FEMALE |36 |basic 0
15(2010-01-07 2010-01-08 FEMALE |33 |basic 0
19 (2010-01-10 2010-01-10 FEMALE [29 |basic 0
21|2010-01-10 2010-01-11 MALE |30 [basic 0
25|2010-01-12 2010-01-15 FEMALE |26 [basic 0

column and assign each different country a discrete value. We chose this approach for the
Country_Destination column, because this is the column we are trying to predict.

v

In [16]: # Encoding our categorical variables with a numeric value

clean_users['country_destination'] = clean_users.country_destination.rep
lace(to_replace="'AU',value=0)

clean_users['country_destination'] = clean_users.country destination.rep
lace(to_replace="CA',value=0)

clean_users['country_destination'] = clean_users.country_destination.rep
lace(to_replace='DE',value=0)

clean_users['country_destination'] = clean_users.country destination.rep
lace(to_replace="ES',value=0)

clean_users['country destination'] = clean_users.country destination.rep
lace(to_replace="'FR',value=0)

clean_users['country_destination'] = clean_users.country destination.rep
lace(to_replace="GB',value=0)

clean_users['country destination'] = clean_users.country destination.rep
lace(to_replace="IT',value=0)

clean_users['country_destination'] = clean_users.country_destination.rep
lace(to_replace="'NL',value=0)

clean_users['country destination'] = clean_users.country destination.rep
lace(to_replace="'PT',value=0)

clean_users['country destination'] = clean_users.country destination.rep
lace(to_replace='US',value=1)

clean_users['country_destination'] = clean_users.country_destination.rep
lace(to_replace="other',value=0)

clean_users.head(10)

Out[16]: date_account_created [date_first_booking |[gender |[age [sighup_method |si
2 [(2010-09-28 2010-08-02 FEMALE |56 [basic 3
3 [2011-12-05 2012-09-08 FEMALE |42 [facebook 0
6 |2010-01-02 2010-01-05 FEMALE |46 [basic 0
7 |2010-01-03 2010-01-13 FEMALE |47 [basic 0
8 |2010-01-04 2010-07-29 FEMALE |50 [basic 0
10|2010-01-04 2010-01-06 FEMALE |36 [basic 0
15|2010-01-07 2010-01-08 FEMALE |33 [basic 0
19 (2010-01-10 2010-01-10 FEMALE |29 [basic 0
21|2010-01-10 2010-01-11 MALE 30 |basic 0
25(2010-01-12 2010-01-15 FEMALE |26 |basic 0

>

In [17]: # perform one-hot encoding of the categorical data "signup_method"
tmp_df = pd.get_dummies(clean_users.signup_method,prefix="signup_metho
Slgan_user‘s = pd.concat((clean_users,tmp df),axis=1) # add back into the
dataframe
clean_users.head(10)

Out[17]: date_account_created | date_first_booking |gender |age [signup_method |si
2 (2010-09-28 2010-08-02 FEMALE |56 [basic 3
3 |12011-12-05 2012-09-08 FEMALE |42 [facebook 0
6 |2010-01-02 2010-01-05 FEMALE |46 [basic 0
7 |2010-01-03 2010-01-13 FEMALE |47 [basic 0
8 [2010-01-04 2010-07-29 FEMALE |50 [basic 0
10|2010-01-04 2010-01-06 FEMALE |36 [basic 0
15(2010-01-07 2010-01-08 FEMALE |33 [basic 0
19(2010-01-10 2010-01-10 FEMALE |29 [basic 0
21(2010-01-10 2010-01-11 MALE 30 |basic 0
25(2010-01-12 2010-01-15 FEMALE |26 |basic 0

v

In [18]:

perform one-hot encoding of the categorical data "affiliate_provider"

clean_users['affiliate_provider']
place('baidu’', 'other')

clean_users['affiliate provider']
place('email-marketing', 'other')
clean_users['affiliate_provider'] =

clean_users['affiliate provider']

clean_users['affiliate provider'].

clean_users['affiliate_provider']

place("facebook-open-graph", 'other')

clean_users['affiliate provider'] =
place('gsp', 'other')
clean_users['affiliate_provider']
place('meetup', 'other')
clean_users['affiliate provider']
place('naver', 'other')
clean_users['affiliate_provider']
place('padmapper', 'other')
clean_users['affiliate provider']
place('vast', 'other')
clean_users['affiliate_provider']
place('yahoo', 'other')
clean_users['affiliate provider'] =
place('yandex', 'other')

clean_users['affiliate_provider']
clean_users['affiliate_provider']
clean_users['affiliate_provider']
clean_users['affiliate_provider']
clean_users['affiliate_provider']
clean_users['affiliate_provider']

clean_users['affiliate_provider']

.re

re

.re

.re

.re

.re

.re

.re

.re

.re

tmp_df = pd.get _dummies(clean_users.affiliate provider,prefix="'affiliate

_provider")

clean_users = pd.concat((clean_users,tmp_df),axis=1) # add back into the

dataframe
clean_users.head(10)

Out[18]:

In [19]:

Out[19]:

date_account_created [date_first_booking |[gender [age [sighup_method |si
2 |2010-09-28 2010-08-02 FEMALE |56 |basic 3
3 |2011-12-05 2012-09-08 FEMALE (42 |facebook 0
6 |2010-01-02 2010-01-05 FEMALE |46 [basic 0
7 |2010-01-03 2010-01-13 FEMALE (47 |basic 0
8 |2010-01-04 2010-07-29 FEMALE [50 |basic 0
10 {2010-01-04 2010-01-06 FEMALE |36 |basic 0
15(2010-01-07 2010-01-08 FEMALE |33 |basic 0
19 (2010-01-10 2010-01-10 FEMALE [29 |basic 0
21|2010-01-10 2010-01-11 MALE |30 [basic 0
25|2010-01-12 2010-01-15 FEMALE |26 [basic 0

10 rows x 24 columns

perform one-hot encoding of the categorical data "signup_app"

tmp_df = pd.get dummies(clean_users.signup_app,prefix="signhup_app')
clean_users = pd.concat((clean_users,tmp_df),axis=1) # add back into the
dataframe

clean_users.head(10)

date_account_created | date_first_booking |gender |age [signup_method |si
2 (2010-09-28 2010-08-02 FEMALE |56 |basic 3
3 [2011-12-05 2012-09-08 FEMALE |42 |facebook 0
6 [2010-01-02 2010-01-05 FEMALE |46 |basic 0
7 |2010-01-03 2010-01-13 FEMALE |47 [basic 0
8 |2010-01-04 2010-07-29 FEMALE |50 |basic 0
102010-01-04 2010-01-06 FEMALE |36 |basic 0
1512010-01-07 2010-01-08 FEMALE |33 |basic 0
19(2010-01-10 2010-01-10 FEMALE |29 [basic 0
21|2010-01-10 2010-01-11 MALE |30 |basic 0
25(2010-01-12 2010-01-15 FEMALE |26 |basic 0

10 rows x 28 columns

In [20]:

Out[20]:

perform one-hot encoding of the categorical data "first _device_ type"

tmp_df = pd.get_dummies(clean_users.first_device_type,prefix="first_devi

ce_type')
clean_users
dataframe

clean_users.head(10)

pd.concat((clean_users,tmp_df),axis=1) # add back into the

date_account_created | date_first_booking |gender |age [signup_method |si
2 |2010-09-28 2010-08-02 FEMALE [56 |basic 3
3 |2011-12-05 2012-09-08 FEMALE (42 |facebook 0
6 |2010-01-02 2010-01-05 FEMALE [46 |basic 0
7 |2010-01-03 2010-01-13 FEMALE |47 [basic 0
8 |2010-01-04 2010-07-29 FEMALE [50 |basic 0
10 (2010-01-04 2010-01-06 FEMALE |36 |basic 0
15(2010-01-07 2010-01-08 FEMALE |33 |basic 0
19 (2010-01-10 2010-01-10 FEMALE |29 [basic 0
21|2010-01-10 2010-01-11 MALE |30 [basic 0
25|2010-01-12 2010-01-15 FEMALE |26 [basic 0

10 rows x 37 columns

In [21]:

perform one-hot encoding of the categorical data "first _browser"

replace the current first_browser attribute with something slightly mo
re intuitive and readable

clean_users['first_browser Chrome'] = clean_users.first _browser == 'Chro
me'

clean_users.first _browser_Chrome = clean_users.first browser_Chrome.asty

pe(np.int)

clean_users['first_browser_Safari'] = clean_users.first_browser == 'Safa
ri'

clean_users.first_browser_Safari = clean_users.first browser_Safari.asty
pe(np.int)

clean_users['first_browser IE'] = clean_users.first browser == 'IE'
clean_users.first_browser IE = clean_users.first_browser IE.astype(np.in
t)

clean_users['first_browser Mobile Safari'] = clean_users.first_browser =
= 'Mobile Safari'

clean_users.first_browser_Mobile_Safari = clean_users.first_browser_Mobi
le Safari.astype(np.int)

clean_users['first_browser Firefox'] = clean_users.first browser == 'Fir
efox'

clean_users.first_browser_Firefox = clean_users.first_browser_Firefox.as

type(np.int)

clean_users['first_browser_Other'] = ~clean_users.first_browser.isin(['C
hrome', 'Safari', 'IE', 'Mobile Safari', 'Firefox'])
clean_users.first_browser_Other = clean_users.first browser Other.astype
(np.int)

clean_users.head(10)

Out[21]:

date_account_created | date_first_booking |gender |age [signup_method |si
2 |2010-09-28 2010-08-02 FEMALE |56 |basic 3
3 |12011-12-05 2012-09-08 FEMALE (42 |facebook 0
6 |2010-01-02 2010-01-05 FEMALE [46 |basic 0
7 |2010-01-03 2010-01-13 FEMALE |47 [basic 0
8 |2010-01-04 2010-07-29 FEMALE [50 |basic 0
10 {2010-01-04 2010-01-06 FEMALE |36 |basic 0
15(2010-01-07 2010-01-08 FEMALE |33 |basic 0
19 (2010-01-10 2010-01-10 FEMALE |29 [basic 0
21|2010-01-10 2010-01-11 MALE (|30 [basic 0
25|2010-01-12 2010-01-15 FEMALE [26 |basic 0

10 rows % 43 columns

After looking into the portions of the language column, we decided to encode this value as

language_en and language _other. About 97% of our dataset had the value of 'en' in the language

column.

In [22]: # perform one-hot encoding of the categorical data "language"
lang en = clean_users[clean_users.language == 'en']['language'].count()
total = len(clean_users)

print ('count EN:' , lang en)
print ('Total:', total)

print ('Percentage English:' , (float(lang_en)/total) * 100)

clean_users['language_en'] = clean_users.language == 'en'
clean_users.language_en = clean_users.language_en.astype(np.int)

clean_users['language_other'] = clean_users.language != 'en’
clean_users.language other = clean_users.language other.astype(np.int)
clean_users.head(10)

('count EN:', 54157)
('Total:', 55655)
('Percentage English:', 97.30841793190189)

Out[22]: date_account_created | date_first_booking |gender |age [signup_method |si
2 |2010-09-28 2010-08-02 FEMALE |56 |basic 3
3 |2011-12-05 2012-09-08 FEMALE (42 |facebook 0
6 |2010-01-02 2010-01-05 FEMALE (46 |basic 0
7 |2010-01-03 2010-01-13 FEMALE (47 |basic 0
8 |2010-01-04 2010-07-29 FEMALE [50 |basic 0
10 {2010-01-04 2010-01-06 FEMALE |36 |basic 0
15(2010-01-07 2010-01-08 FEMALE |33 |basic 0
19 (2010-01-10 2010-01-10 FEMALE [29 |basic 0
21|2010-01-10 2010-01-11 MALE [30 [basic 0
25|2010-01-12 2010-01-15 FEMALE |26 [basic 0

10 rows x 45 columns

We chose to encode the date_account_created by month and weekday, because they would repeat
more than 3 times. If we had chose week and/or year it would only show up 3 times, whereas weekday
would give us a solid breakdown of when accounts were being created.

In [23]:

Out[23]:

Also, we chose to encode the date_first_booking by month and weekday, because they would repeat

perform one-hot encoding of the categorical data "date _account create

d"

clean_users['date_account_created Month']

eated'].map(lambda x: x.month)
clean_users['date_account_created_WeekDay']

created'].map(lambda x: x.weekday())

clean_users.head(10)

clean_users['date_account_cr

= clean_users['date_account_

date_account_created | date_first_booking |gender |age [signup_method |si
2 (2010-09-28 2010-08-02 FEMALE [56 |basic 3
3 [2011-12-05 2012-09-08 FEMALE |42 |facebook 0
6 [2010-01-02 2010-01-05 FEMALE |46 |basic 0
7 |2010-01-03 2010-01-13 FEMALE |47 [basic 0
8 |2010-01-04 2010-07-29 FEMALE |50 |basic 0
102010-01-04 2010-01-06 FEMALE |36 |basic 0
1512010-01-07 2010-01-08 FEMALE |33 |basic 0
19(2010-01-10 2010-01-10 FEMALE |29 [basic 0
21|2010-01-10 2010-01-11 MALE |30 |basic 0
25(2010-01-12 2010-01-15 FEMALE |26 |basic 0

10 rows x 47 columns

more than 3 times. If we had chose week and/or year it would only show up 3 times, whereas weekday
would give us a solid breakdown of when the most bookings take place.

In [24]: # perform one-hot encoding of the categorical data "date first _booking"

clean_users['date_first_booking Month'] = clean_users['date_first_bookin
g'].map(lambda x: x.month)

clean_users['date_first_booking WeekDay'] = clean_users['date_first_book
ing'].map(lambda x: x.weekday())

clean_users.head(10)

Out[24]: date_account_created | date_first_booking |gender |age [signup_method |si
2 |2010-09-28 2010-08-02 FEMALE |56 |basic 3
3 |12011-12-05 2012-09-08 FEMALE (42 |facebook 0
6 |2010-01-02 2010-01-05 FEMALE (46 |basic 0
7 |2010-01-03 2010-01-13 FEMALE |47 [basic 0
8 |2010-01-04 2010-07-29 FEMALE [50 |basic 0
10 (2010-01-04 2010-01-06 FEMALE [36 |basic 0
15(2010-01-07 2010-01-08 FEMALE |33 |basic 0
19 (2010-01-10 2010-01-10 FEMALE |29 [basic 0
21|2010-01-10 2010-01-11 MALE [30 [basic 0
25|2010-01-12 2010-01-15 FEMALE [26 |basic 0

10 rows % 49 columns

In [25]: clean_users.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 55655 entries, 2 to 213445
Data columns (total 49 columns):
date_account_created
date_first_booking

gender

age

signup_method

signup_flow

language

affiliate_provider

signup_app

first device type

first browser

country_destination

gender_FEMALE

gender MALE

gender_ OTHER

signup_method_basic
signup_method_facebook
signup_method google

affiliate provider_bing
affiliate_provider_craigslist
affiliate provider_direct
affiliate provider_facebook
affiliate_provider_google
affiliate_provider_other
signup_app_Android
signup_app_Moweb

signup_app_Web

signup_app_i0S

first device type Android Phone
first _device_type_ Android Tablet
first_device_type_Desktop (Other)
first_device_type_Mac Desktop
first device type Other/Unknown
first_device_type SmartPhone (Other)
first_device_type_Windows Desktop
first device type iPad
first_device_type_iPhone
first_browser_Chrome
first_browser_Safari

first browser IE
first_browser_ Mobile_ Safari
first_browser_Firefox

first browser Other

language _en

language_other
date_account_created_Month
date_account_created WeekDay
date_first_booking Month
date_first_booking_ WeekDay
dtypes: datetime64[ns](2), float64(26),

55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655
55655

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

datetime64[ns]
datetime64[ns]
object
float64
object
int64
object
object
object
object
object
int64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
int64
int64
inte4
int64
int64
inte4
int64
int64
int64
inte4
int64
int64

int64(14), object(7)

memory usage: 21.2+ MB

In [26]: # Clean up the dataset by removing our categorical variables

if 'date_account_created' in clean_users:
del clean_users['date_account _created']

if 'date_first_booking' in clean_users:
del clean_users['date_first_booking']

if 'gender' in clean_users:
del clean_users['gender']

if 'signup_method' in clean_users:
del clean_users['signup_method']

if 'affiliate provider' in clean_users:
del clean_users['affiliate provider']

if 'signup_app' in clean_users:
del clean_users['signup_app']

if 'first_device_type' in clean_users:
del clean_users['first _device type']

if 'first_browser' in clean_users:
del clean_users['first_browser']

if 'language' in clean_users:
del clean_users['language’]

clean_users.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 55655 entries, 2 to 213445
Data columns (total 40 columns):

age 55655 non-null float64
signup_flow 55655 non-null int64
country destination 55655 non-null int64
gender FEMALE 55655 non-null float64
gender_MALE 55655 non-null float64
gender_OTHER 55655 non-null float64
signup_method basic 55655 non-null float64
signup_method_facebook 55655 non-null float64
signup_method_google 55655 non-null float64
affiliate_provider_bing 55655 non-null float64
affiliate provider_craigslist 55655 non-null float64
affiliate provider_direct 55655 non-null float64
affiliate_provider_facebook 55655 non-null float64
affiliate_provider_google 55655 non-null float64
affiliate provider_other 55655 non-null float64
signup_app_Android 55655 non-null float64
signup_app_Moweb 55655 non-null float64
signup_app_Web 55655 non-null float64
signup_app_i0S 55655 non-null float64
first_device_type_Android Phone 55655 non-null floaté64
first_device_type_Android Tablet 55655 non-null float64
first _device_ type Desktop (Other) 55655 non-null float64
first_device_type_Mac Desktop 55655 non-null float64
first_device_type_Other/Unknown 55655 non-null floaté64
first device_type SmartPhone (Other) 55655 non-null float64
first _device type Windows Desktop 55655 non-null float64
first_device_type_iPad 55655 non-null float64
first_device_type_iPhone 55655 non-null float64
first _browser_ Chrome 55655 non-null int64
first _browser_Safari 55655 non-null int64
first_browser_IE 55655 non-null int64
first browser Mobile Safari 55655 non-null int64
first _browser Firefox 55655 non-null int64
first_browser_Other 55655 non-null int64
language_en 55655 non-null int64
language_other 55655 non-null int64
date_account_created Month 55655 non-null int64
date_account_created_WeekDay 55655 non-null int64
date_first_booking_Month 55655 non-null int64
date_first booking WeekDay 55655 non-null int64

dtypes: float64(26), int64(14)
memory usage: 17.4 MB

Logistic Regression

In [27]: from sklearn.cross_validation import ShuffleSplit

breaking our dataset into:

(y) values we are trying to predict

(x) attributes used to predict y

if 'country_destination' in clean_users:
y = clean_users['country destination'].values
del clean_users['country destination']
X = clean_users.values

creating a cross-validation object to help split our data into a train
ing (89%) and testing (20%) sets
num_cv_iterations = 1
num_instances = len(y)
cv_object = ShuffleSplit(n=num_instances,
n_iter=num_cv_iterations,
test_size = 0.2)

print (cv_object)

ShuffleSplit(55655, n_iter=1, test size=0.2, random_state=None)

In [29]:

from sklearn.cross_validation import ShuffleSplit
from sklearn.linear_model import LogisticRegression
from sklearn import metrics as mt

from sklearn.cross_validation import StratifiedKFold

num_cv_iterations = 3

num_instances = len(y)

cv = StratifiedKFold(y, n_folds=10)
print cv

lr_clf = LogisticRegression(penalty='12"', C=0.2, class_weight="auto') #
get object

iter_num=0

the 1indices are the rows used for training and testing in each iterati
on
for train, test in cv:

X_train = X[train]

y_train = y[train]

X_test
y_test

X[test]
y[test]

train the reusable logisitc regression model on the training data
lr_clf.fit(X_train,y_train) # train object
y _hat = 1lr_clf.predict(X test) # get test set precitions

now let's get the accuracy and confusion matrix for this iteration
s of training/testing

acc = mt.accuracy_score(y_test,y hat)

conf = mt.confusion_matrix(y_test,y_hat)

print "====Iteration",iter_num," ====

print "accuracy", acc

print "confusion matrix\n",conf

iter_num+=1

sklearn.cross_validation.StratifiedKFold(labels=[1 0 1 ..., @ 1 1], n_f
0lds=10, shuffle=False, random_state=None)

====Iteration @ ====

accuracy 0.510959396335

confusion matrix

[[946 681]

[2041 1898]]
====Iteration 1 ====
accuracy 0.49101688825
confusion matrix
[[1038 589]

[2244 1695]]
====Iteration 2 ====
accuracy 0.557671577434
confusion matrix
[[698 929]

[1533 2406]]
====Iteration 3 ====
accuracy 0.372619475386
confusion matrix
[[1351 276]

[3216 723]]
====Iteration 4 ====
accuracy 0.472152353575
confusion matrix
[[1083 544]

[2394 1545]]
====Iteration 5 ====
accuracy 0.495058400719
confusion matrix
[[938 689]

[2121 1817]]
====Iteration 6 ====
accuracy 0.581850853549
confusion matrix
[[342 1285]

[1042 2896]]
====Iteration 7 ====
accuracy 0.420305480683
confusion matrix
[[1239 388]

[2838 1100]]
====Iteration 8 ====
accuracy 0.443486073675
confusion matrix
[[1172 455]

[2642 1296]]
====Iteration 9 ====
accuracy 0.486433063792
confusion matrix
[[886 741]

[2117 1821]]

In []: weights = 1r _clf.coef .T # take transpose to make a column vector
variable_names = train_users.columns
for coef, name in zip(weights,variable_names):
print name, 'has weight of ', coef[0]

print 1lr_clf.coef_

In []: # importing Logistic Regression packages from SciKit Learn

from sklearn.linear_model import LogisticRegression
from sklearn import metrics as mt
from sklearn.preprocessing import StandardScaler

creating our Logistic Regression object
lr_clf = LogisticRegression(penalty="12"', C=0.2, class weight="auto')

the 1indices are the rows used for training and testing in each iterati
on
for train_indices, test indices in cv_object:

explicitly breaking our data set into Testing/Training sets
this will be usefull to prevent data snooping

X_train = X[train_indices]

y_train = y[train_indices]

X_test
y_test

X[test_indices]
y[test_indices]

use the Standard Scaler to scale our columns

this will allow us to interpret the weights from the Logistic Regr
ession Model

between the different columns

scl obj = StandardScaler()

scl obj.fit(X train)

X_train_scaled = scl_obj.transform(X_train)
X _test _scaled = scl obj.transform(X_test)

train the Logistic Regression model using the training data
lr_clf.fit(X_train_scaled,y_train) # train object

predict the values of the test data
y_hat = 1lr_clf.predict(X_test_scaled)

print the accuracy score and confusion matrix this model and data
acc = mt.accuracy_score(y_test,y hat)

conf = mt.confusion_matrix(y_test,y hat)

print ("==== Iteration ====")

print ("accuracy", acc)

print ("confusion matrix\n",conf)

combine the column names and the weights into a Llist
zip_vars = zip(lr_clf.coef_.T, clean_users.columns)

print the column name and its weight
for coef, name in zip vars:
print (name, 'has weight of', coef[0])

Confusion matrix shows that no rows were predicted to book their first AirBNB outside the United
States. We believe that this is due to a even mixing of individuals who booked in and out of the US. An
example of this would be if two individuals with the same values in every attribute booked in different
countries (one within the US and one outside the US).

In []: # import the pyplot Library
from matplotlib import pyplot as plt
%matplotlib inline

create pandas series of column names and weights
weights = pd.Series(lr_clf.coef_[0],index=clean_users.columns)

print bar chart of column names and weights
weights.plot(kind="bar',figsize=(30,4))
plt.show()

SVM

In []: # import the Scikit Learn SVC Llibrary
from sklearn.svm import SVC

build and train the SVC model using the training data

svm_clf = SVC(C=0.1, kernel='poly', degree=3, gamma='auto', class_weight
='balanced')

svm_clf.fit(X train, y_train) # train object

predict the values of the test data
y_hat = svm_clf.predict(X_test) # get test set precitions

print the accuracy score and confusion matrix
acc = mt.accuracy_score(y_test,y hat)

conf = mt.confusion_matrix(y_test,y hat)

print ('accuracy:', acc)

print (conf)

In [32]: # print support vectors
print (svm_clf.support_vectors_.shape)
print (svm_clf.support_.shape)
print (svm _clf.n_support)

(42843L, 39L)
(42843L,)
[12602 30241]

In [33]: # Support Vector Coefficients
print (svm_clf.coef)
weights = pd.Series(svm_clf.coef_[0],index=clean_users.columns)
weights.plot(kind="bar"', figsize=(30,4))

[[-4.40175812e-04 7.62055642e-02 1.75318063e-02 7.03466040e-03
-2.45664670e-02 -2.74995234e-01 -2.84065889%e-01 5.59061123e-01
-4.75887306e-01 1.36985181e+00 -4.66697243e-01 -5.07953277e-01
-4.81753642e-01 5.62439660e-01 5.41865285e-03 2.80138506e-02

6.08989686e-03 -3.95224000e-02 1.48745775e-01 -6.05036818e-02
4.94500885e-02 -3.43900240e-02 -1.84506027e-02 5.03573665e-02
-5.70166963e-02 -9.48300257e-02 1.66378001e-02 2.23611657e-02
-2.83364570e-02 -7.71071017e-03 2.70269841e-02 -9.79284780e-03
-3.54813486e-03 4.40997968e-03 -4.40997926e-03 3.74588084e-04
-3.14765929e-03 2.58155621e-03 1.02209927e-03]]

Out[33]: <matplotlib.axes. subplots.AxesSubplot at ©xaeb5710>

15

1.0

05 o

00 = — —

-05 4

=10

S
e
t
)
)

&&&&&&&&

fari
_IE
fari

r_S:

wsel

e_S:
Firefi

5w
oooooooooo

age
flow
on
D:
on
D:

=

r_MALE

Pho

E L5

g 5 2 5
8 5 @ =1 8

e
Weel
ing_M:
Weel

e (Othel
Desl
_type_il
e_iPh
r_Chrome

roi
o

777777
S 5t T X

1t

E
8 g & 2

_ty]

first_browst

ge!

first_bi

2 o o

first_device
first_brow:
first_bs

first_device.
first_browser_Mol
date_first_bo

ooooo
>>>>>

date_first_booki

date_account_cre

s

E £ B @

rst,
irst_ds
irsf
ICe
e
date_account_creats

first_d
first

In []: # Review the support of the vectors

create a dataframe of the training data

df_tested_on = clean_users.iloc[train_indices] # saved from above, the 1i
ndices chosen for training

now get the support vectors from the trained model

df_support = df_tested_on.iloc[svm_clf.support_,:]

df _support['US'] = y[svm_clf.support_] # Place in the 'US' Column to the
pandas dataframe

clean_users['US'] = y # and for the original data

df_support.info()

In []: # view attribute statistics
from pandas.tools.plotting import boxplot

seperately group the original data and the support vectors
df _grouped_support = df_support.groupby(['US']) # support vectors
df_grouped = clean_users.groupby(['US']) # original data

plot Kernel Density Estimation of Different variables
vars_to_plot = ['date_account_created Month', 'age', 'gender_MALE']

for v in vars_to plot:
plt.figure(figsize=(18,8))

plot original distributions
plt.subplot(1,2,2)

ax = df_grouped[v].plot.kde()
plt.legend(['non-US', 'US'])
plt.title(v+"' (Original)")

plot support vector stats
plt.subplot(1,2,1)

ax = df_grouped_support[v].plot.kde()
plt.legend(['non-US"', 'US'])
plt.title(v+' (Chosen)')

The values chosen to as support vectors have less seperation than those of the original data set
because the support vectors are on the edge of class boundaries. The differences between the two
sets seems to be small, this could be due to the lack of differences between individuals who first
booked outside of the US vs inside of the US.

By taking the dot product of an individual observation and our support vector, we can classify our data
to find out where the user will vacation to first usign Airbnb.

The KDE plot for gender are symmetric meaning that our linear model was able to separate the gender
data relatively well. On the other hand, our KDE plot for date_account_created does not look very
symmetric at all. In a further study, we may want to use a non-linear kernel for our SVM in order to help
split the categories better.

Comparison: Logistic Regresion vs. SVM

Our linear models performed very well in our opinion. Using the 80/20 split we were able to consistently
get scores of 70+% accuracy. Additionally when running our SVM we also were able to consistently get
scores greater than 70%. We didn't perform gradient descent as our dataset did not require it, due to
the relative small size of our dataset (approx. 50k observations). The scores for both models gave us
approximitely the same accuracy scores. The SVM was significantly more expensive to run and
complete on our systems (approximate 5 times longer than logistic regression. Both Models are very
similar in regards to the outputs/results. SVM is a better classification method than Logistic Regression
as it is fundamentally used to seperate via the hyperplane. Whereas Logistic regression is
fundamentally used to predict using the logit function. Additionally, SVM is best suited for high
dimensionality whereas Logistic Regression is best suited for low dimensionality. With a dataset of 50
dimensions, it appears they are both. Logistic Regression seems to be the better of the two simply
becuase it places less stress on the machine(s).

In a further study, we would like to investigate this data using a non-linear kernel. In the numerous
models we built for this dataset, we were not able to successfully predict users whose first Airbnb
booking was outside of the US. After looking over our dataset, the weights from our models and the
KDE plots, we believe that a higher degree polynomial would be best suited as a model for our data.

Model change for weight fix

To fix the SVC and Logistic regression we simply need to add a parameter setting for weight. We
added class-weight="auto' which decreased our accuracy rating but dramatically increased our
precision and recall due to the model including all class variables (previously it only classified all
destinations as the US). Additionally, we changed our model to use stratifiedkfold for validation which
saw also saw an increase in the accuracy.

Model Comparison

As seen by the weights plot The models had similar weight values.

the logistic model's weights are faily evenly distributed with high weights found in affiliate providers,
signup method and age. Below are the five highest weights per model:

Logistic:

1. affiliateprovider(Craigslist)
2. affiliateprovider(other)

3. devicetype(lpad)

4. age

5. date_first_booking_Month

SVM:

In the SVM the weights are primarily spread across the device type, the browser type and signup flow.
Additionally signup flow held more strength than the age variabl.e

When running the SVM with a linear kernal the model's accuracy was arround 37%, however after
switching up to an RBF kernal and changing the class weights to balanced we were able to
dramatically increase our SVM score to around 53%. (tweaked and changed the default parameter
settings to increase model efficiency)

